

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Programming Model for Analysis

This page describes the programming model that SageMaker Debugger provides for your analysis, and introduces you to the constructs of Trial, Tensor and Rule.

Table of Contents

	Trial

	Path of trial

	SageMaker training job

	Non SageMaker training jobs

	Creating a trial object

	Creating S3 trial

	Creating local trial

	Restricting analysis to a range of steps

	Trial API

	tensor_names

	tensor

	has_tensor

	steps

	modes

	mode

	mode_step

	global_step

	workers

	collections

	collection

	wait_for_steps

	has_passed_step

	Tensor

	Tensor API

	steps

	value

	reduction_value

	shape

	values

	reduction_values

	shapes

	workers

	prev_steps

	Rules

	Built In Rules

	Writing a custom rule

	Constructor

	Function to invoke at a given step

	Invoking a rule

	invoke_rule

	Exceptions

	Utils

	Enable or disable refresh of tensors in a trial

Trial

Trial is an object which lets you query for tensors for a given training job, specified by the path where smdebug’s artifacts are saved.
Trial is capable of loading new tensors as and when they become available at the given path, allowing you to do both offline as well as realtime analysis.

Path of trial

SageMaker training job

When running a SageMaker job this path is on S3. SageMaker saves data from your training job locally on the training instance first and uploads them to an S3 location in your account. When you start a SageMaker training job with the python SDK, you can control this path using the parameter s3_output_path in the DebuggerHookConfig object. This is an optional parameter, if you do not pass this the python SDK will populate a default location for you. If you do pass this, make sure the bucket is in the same region as where the training job is running. If you’re not using the python SDK, set this path for the parameter S3OutputPath in the DebugHookConfig section of CreateTrainingJob API. SageMaker takes this path and appends training_job_name and “debug-output” to it to ensure we have a unique path for each training job.

Non SageMaker training jobs

If you are not running a SageMaker training job, this is the path you pass as out_dir when you create a smdebug Hook. Just like when creating the hook, you can pass either a local path or an S3 path (as s3://bucket/prefix).

Creating a trial object

There are two types of trials you can create: LocalTrial or S3Trial depending on the path. We provide a wrapper method to create the appropriate trial.

The parameters you have to provide are:

	path: path can be a local path or an S3 path of the form s3://bucket/prefix. You should see directories such as collections, events and index at this path once the training job starts.

	name: name can be any string. It is to help you manage different trials. This is an optional parameter, which defaults to the basename of the path if not passed. Please make sure to give it a unique name to prevent confusion.

Creating S3 trial

from smdebug.trials import create_trial
trial = create_trial(path='s3://smdebug-testing-bucket/outputs/resnet', name='resnet_training_run')

Creating local trial

from smdebug.trials import create_trial
trial = create_trial(path='/home/ubuntu/smdebug_outputs/resnet', name='resnet_training_run')

Restricting analysis to a range of steps

You can optionally pass range_steps to restrict your analysis to a certain range of steps.
Note that if you do so, Trial will not load data from other steps.

Examples

	range_steps=(100, None): This will load all steps after 100

	range_steps=(None, 100): This will load all steps before 100

	range_steps=(100, 200) : This will load steps between 100 and 200

	range_steps=None: This will load all steps

from smdebug.trials import create_trial
tr = create_trial(path='s3://smdebug-testing-bucket/outputs/resnet', name='resnet_training',
 range_steps=(100, 200))

Trial API

Here’s a list of methods that the Trial API provides which helps you load data for analysis. Please click on the method to see all the parameters it takes and a detailed description. If you are not familiar with smdebug constructs, you might want to review this doc [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api] before going through this page.

Method	Description
————-	————-
trial.tensor_names()	See names of all tensors available
trial.tensor(name)	Retrieve smdebug Tensor object
trial.has_tensor(name)	Query for whether tensor was saved
trial.steps()	Query steps for which data was saved
trial.modes()	Query modes for which data was saved
trial.mode(step)	Query the mode for a given global step
trial.global_step(mode, step)	Query global step for a given step and mode
trial.mode_step(step)	Query the mode step for a given global step
trial.workers()	Query list of workers from the data saved
trial.collections()	Query list of collections saved from the training job
trial.collection(name)	Retrieve a single collection saved from the training job
trial.wait_for_steps(steps)	Wait till the requested steps are available
trial.has_passed_step(step)	Query whether the requested step is available

tensor_names

Retrieves names of tensors saved

trial.tensor_names(step= None,
 mode=modes.GLOBAL,
 regex=None,
 collection=None)

Arguments

All arguments to this method are optional. You are not required to pass any of these arguments as keyword arguments.

	step (int) If you want to retrieve the list of tensors saved at a particular step, pass the step number as an integer. This step number will be treated as step number corresponding to the mode passed below. By default it is treated as global step.

	mode (smdebug.modes enum value) If you want to retrieve the list of tensors saved for a particular mode, pass the mode here as smd.modes.TRAIN, smd.modes.EVAL, smd.modes.PREDICT, or smd.modes.GLOBAL.

	regex (str or list[str]) You can filter tensors matching regex expressions by passing a regex expressions as a string or list of strings. You can only pass one of regex or collection parameters.

	collection (Collection or str) You can filter tensors belonging to a collection by either passing a collection object or the name of collection as a string. You can only pass one of regex or collection parameters.

Returns

list[str]: List of strings representing names of tensors matching the given arguments. Arguments are processed as follows: get the list of tensor names for given step and mode, saved for given step matching all the given arguments, i.e. intersection of tensors matching each of the parameters.

Examples

	trial.tensor_names() Returns all tensors saved for any step or mode.

	trial.tensor_names(step=10, mode=modes.TRAIN) Returns tensors saved for training step 10

	trial.tensor_names(regex='relu') Returns all tensors matching the regex pattern relu saved for any step or mode.

	trial.tensor_names(collection='gradients') Returns tensors from collection “gradients”

	trial.tensor_names(step=10, mode=modes.TRAIN, regex='softmax') Returns tensor saved for 10th training step which matches the regex softmax

tensor

Retrieve the smdebug.core.tensor.Tensor object by the given name tname. You can review all the methods that this Tensor object provides here.

trial.tensor(tname)

Arguments

	tname (str) Takes the name of tensor

Returns

smdebug.core.tensor.Tensor object which has this API

has_tensor

Query whether the trial has a tensor by the given name

trial.has_tensor(tname)

Arguments

	tname (str) Takes the name of tensor

Returns

bool: True if the tensor is seen by the trial so far, else False.

steps

Retrieve a list of steps seen by the trial

trial.steps(mode=None)

Arguments

	mode (smdebug.modes enum value) Passing a mode here allows you want to retrieve the list of steps seen by a trial for that mode
If this is not passed, returns steps for all modes.

Returns

list[int] List of integers representing step numbers. If a mode was passed, this returns steps within that mode, i.e. mode steps.
Each of these mode steps has a global step number associated with it. The global step represents
the sequence of steps across all modes executed by the job.

modes

Retrieve a list of modes seen by the trial

trial.modes()

Returns

list[smdebug.modes enum value] List of modes for which data was saved from the training job across all steps seen.

mode

Given a global step number you can identify the mode for that step using this method.

trial.mode(global_step=100)

Arguments

	global_step (int) Takes the global step as an integer

Returns

smdebug.modes enum value of the given global step

mode_step

Given a global step number you can identify the mode_step for that step using this method.

trial.mode_step(global_step=100)

Arguments

	global_step (int) Takes the global step as an integer

Returns

int: An integer representing mode_step of the given global step. Typically used in conjunction with mode method.

global_step

Given a mode and a mode_step number you can retrieve its global step using this method.

trial.global_step(mode=modes.GLOBAL, mode_step=100)

Arguments

	mode (smdebug.modes enum value) Takes the mode as enum value

	mode_step (int) Takes the mode step as an integer

Returns

int An integer representing global_step of the given mode and mode_step.

workers

Query for all the worker processes from which data was saved by smdebug during multi worker training.

trial.workers()

Returns

list[str] A sorted list of names of worker processes from which data was saved. If using TensorFlow Mirrored Strategy for multi worker training, these represent names of different devices in the process. For Horovod, torch.distributed and similar distributed training approaches, these represent names of the form worker_0 where 0 is the rank of the process.

collections

List the collections from the trial. Note that tensors part of these collections may not necessarily have been saved from the training job. Whether a collection was saved or not depends on the configuration of the Hook during training.

trial.collections()

Returns

dict[str -> Collection] A dictionary indexed by the name of the collection, with the Collection object as the value. Please refer Collection API for more details.

collection

Get a specific collection from the trial. Note that tensors which are part of this collection may not necessarily have been saved from the training job. Whether this collection was saved or not depends on the configuration of the Hook during training.

trial.collection(coll_name)

Arguments

	coll_name (str) Name of the collection

Returns

Collection The requested Collection object. Please refer Collection API for more details.

wait_for_steps

This method allows you to wait for steps before proceeding. You might want to use this method if you want to wait for smdebug to see the required steps so you can then query and analyze the tensors saved by that step. This method blocks till all data from the steps are seen by smdebug.

trial.wait_for_steps(required_steps, mode=modes.GLOBAL)

Arguments

	required_steps (list[int]) Step numbers to wait for

	mode (smdebug.modes enum value) The mode to which given step numbers correspond to. This defaults to modes.GLOBAL.

Returns

None, but it only returns after we know definitely whether we have seen the steps.

Exceptions raised

StepUnavailable and NoMoreData. See Exceptions section for more details.

has_passed_step

trial.has_passed_step(step, mode=modes.GLOBAL)

Arguments

	step (int) The step number to check if the trial has passed it

	mode (smdebug.modes enum value) The mode to which given step number corresponds to. This defaults to modes.GLOBAL.

Returns

smdebug.core.tensor.StepState enum value which can take one of three values UNAVAILABLE, AVAILABLE and NOT_YET_AVAILABLE.

TODO@Nihal describe these in detail

Tensor

An smdebug Tensor object can be retrieved through the trial.tensor(name) API. It is uniquely identified by the string representing name.
It provides the following methods.

Method	Description
—-	—–
steps()	Query steps for which tensor was saved
value(step)	Get the value of the tensor at a given step as a numpy array
reduction_value(step)	Get the reduction value of the chosen tensor at a particular step
reduction_values(step)	Get all reduction values saved for the chosen tensor at a particular step
values(mode)	Get the values of the tensor for all steps of a given mode
workers(step)	Get all the workers for which this tensor was saved at a given step
prev_steps(step, n)	Get the last n step numbers of a given mode from a given step

Tensor API

steps

Query for the steps at which the given tensor was saved

trial.tensor(name).steps(mode=ModeKeys.GLOBAL, show_incomplete_steps=False)

Arguments

	mode (smdebug.modes enum value) The mode whose steps to return for the given tensor. Defaults to modes.GLOBAL

	show_incomplete_steps (bool) This parameter is relevant only for distributed training. By default this method only returns the steps which have been received from all workers. But if this parameter is set to True, this method will return steps received from at least one worker.

Returns

list[int] A list of steps at which the given tensor was saved

value

Get the value of the tensor at a given step as a numpy array

trial.tensor(name).value(step_num, mode=ModeKeys.GLOBAL, worker=None)

Arguments

	step_num (int) The step number whose value is to be returned for the mode passed through the next parameter.

	mode (smdebug.modes enum value) The mode applicable for the step number passed above. Defaults to modes.GLOBAL

	worker (str) This parameter is only applicable for distributed training. You can retrieve the value of the tensor from a specific worker by passing the worker name. You can query all the workers seen by the trial with the trial.workers() method. You might also be interested in querying the workers which saved a value for the tensor at a specific step, this is possible with the method: trial.tensor(name).workers(step, mode)

Returns

numpy.ndarray The value of tensor at the given step and worker (if the training job saved data from multiple workers)

reduction_value

Get the reduction value of the chosen tensor at a particular step. A reduction value is a tensor reduced to a single value through reduction or aggregation operations. The different reductions you can query for are the same as what are allowed in ReductionConfig when saving tensors.
This API thus allows you to access the reduction you might have saved instead of the full tensor. If you had saved the full tensor, it will calculate the requested reduction at the time of this call.

Reduction names allowed are min, max, mean, prod, std, sum, variance and l1, l2 representing the norms.

Each of these can be retrieved for the absolute value of the tensor or the original tensor. Above was an example to get the mean of the absolute value of the tensor. abs can be set to False if you want to see the mean of the actual tensor.

If you had saved the tensor without any reduction, then you can retrieve the actual tensor as a numpy array and compute any reduction you might be interested in. In such a case you do not need this method.

trial.tensor(name).reduction_value(step_num, reduction_name,
 mode=modes.GLOBAL, worker=None, abs=False)

Arguments

	step_num (int) The step number whose value is to be returned for the mode passed through the next parameter.

	reduction_name (str) The name of the reduction to query for. This can be one of min, max, mean, std, variance, sum, prod and the norms l1, l2.

	mode (smdebug.modes enum value) The mode applicable for the step number passed above. Defaults to modes.GLOBAL

	worker (str) This parameter is only applicable for distributed training. You can retrieve the value of the tensor from a specific worker by passing the worker name. You can query all the workers seen by the trial with the trial.workers() method. You might also be interested in querying the workers which saved a value for the tensor at a specific step, this is possible with the method: trial.tensor(name).workers(step, mode)

	abs (bool) If abs is True, this method tries to return the reduction passed through reduction_name after taking the absolute value of the tensor. It defaults to False.

Returns

numpy.ndarray The reduction value of tensor at the given step and worker (if the training job saved data from multiple workers) as a 1x1 numpy array. If this reduction was saved for the tensor during training as part of specification through reduction config, it will be loaded and returned. If the given reduction was not saved then, but the full tensor was saved, the reduction will be computed on the fly and returned. If both the chosen reduction and full tensor are not available, this method raises TensorUnavailableForStep exception.

shape

Get the shape of the chosen tensor at a particular step.

trial.tensor(name).shape(step_num, mode=modes.GLOBAL, worker=None)

Arguments

	step_num (int) The step number whose value is to be returned for the mode passed through the next parameter.

	mode (smdebug.modes enum value) The mode applicable for the step number passed above. Defaults to modes.GLOBAL

	worker (str) This parameter is only applicable for distributed training. You can retrieve the value of the tensor from a specific worker by passing the worker name. You can query all the workers seen by the trial with the trial.workers() method. You might also be interested in querying the workers which saved a value for the tensor at a specific step, this is possible with the method: trial.tensor(name).workers(step, mode)

Returns

tuple(int) If only the shape of this tensor was saved through save_shape configuration in ReductionConfig, it will be returned. If the full tensor was saved, then shape will be computed and returned today. If both the shape and full tensor are not available, this method raises TensorUnavailableForStep exception.

values

Get the values of the tensor for all steps of a given mode.

trial.tensor(name).values(mode=modes.GLOBAL, worker=None)

Arguments

	mode (smdebug.modes enum value) The mode applicable for the step number passed above. Defaults to modes.GLOBAL

	worker (str) This parameter is only applicable for distributed training. You can retrieve the value of the tensor from a specific worker by passing the worker name. You can query all the workers seen by the trial with the trial.workers() method. You might also be interested in querying the workers which saved a value for the tensor at a specific step, this is possible with the method: trial.tensor(name).workers(step, mode)

Returns

dict[int -> numpy.ndarray] A dictionary with step numbers as keys and numpy arrays representing the value of the tensor as values.

reduction_values

Get all reduction values saved for the chosen tensor at a particular step. A reduction value is a tensor reduced to a single value through reduction or aggregation operations. Please go through the description of the method reduction_value for more details.

trial.tensor(name).reduction_values(step_num, mode=modes.GLOBAL, worker=None)

Arguments

	step_num (int) The step number whose value is to be returned for the mode passed through the next parameter.

	mode (smdebug.modes enum value) The mode applicable for the step number passed above. Defaults to modes.GLOBAL

	worker (str) This parameter is only applicable for distributed training. You can retrieve the value of the tensor from a specific worker by passing the worker name. You can query all the workers seen by the trial with the trial.workers() method. You might also be interested in querying the workers which saved a value for the tensor at a specific step, this is possible with the method: trial.tensor(name).workers(step, mode)

Returns

dict[(str, bool) -> numpy.ndarray] A dictionary with keys being tuples of the form (reduction_name, abs) to a 1x1 numpy ndarray value. abs here is a boolean that denotes whether the reduction was performed on the absolute value of the tensor or not. Note that this method only returns the reductions which were saved from the training job. It does not compute all known reductions and return them if only the raw tensor was saved.

shapes

Get the shapes of the tensor for all steps of a given mode.

trial.tensor(name).shapes(mode=modes.GLOBAL, worker=None)

Arguments

	mode (smdebug.modes enum value) The mode applicable for the step number passed above. Defaults to modes.GLOBAL

	worker (str) This parameter is only applicable for distributed training. You can retrieve the value of the tensor from a specific worker by passing the worker name. You can query all the workers seen by the trial with the trial.workers() method. You might also be interested in querying the workers which saved a value for the tensor at a specific step, this is possible with the method: trial.tensor(name).workers(step, mode)

Returns

dict[int -> tuple(int)] A dictionary with step numbers as keys and tuples of ints representing the shapes of the tensor as values.

workers

Get all the workers for which this tensor was saved at a given step

trial.tensor(name).workers(step_num, mode=modes.GLOBAL)

Arguments

	step_num (int) The step number whose value is to be returned for the mode passed through the next parameter.

	mode (smdebug.modes enum value) The mode applicable for the step number passed above. Defaults to modes.GLOBAL

Returns

list[str] A list of worker names for which the tensor was saved at the given step.

prev_steps

Get the last n step numbers of a given mode from a given step.

trial.tensor(name).prev_steps(step, n, mode=modes.GLOBAL)

Arguments

	step (int) The step number whose value is to be returned for the mode passed.

	n (int) Number of previous steps to return

	mode (smdebug.modes enum value) The mode applicable for the step number passed above. Defaults to modes.GLOBAL

Returns

list[int] A list of size at most n representing the previous steps for the given step and mode. Note that this list can be of size less than n if there were only less than n steps saved before the given step in this trial.

Rules

Rules are the medium by which SageMaker Debugger executes a certain piece of code regularly on different steps of a training job. A rule is assigned to a trial and can be invoked at each new step of the trial. It can also access other trials for its evaluation. You can evaluate a rule using tensors from the current step or any step before the current step. Please ensure your logic respects these semantics, else you will get a TensorUnavailableForStep exception as the data would not yet be available for future steps.

Built In Rules

Please refer to the built-in rules that SageMaker provides here [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/sagemaker.md#built-in-rules].

Writing a custom rule

Writing a rule involves implementing the Rule interface. Below, let us look at a simplified version of a VanishingGradient rule.

Constructor

Creating a rule involves first inheriting from the base Rule class provided by smdebug.
For this example rule here, we do not need to look at any other trials, so we set other_trials to None.

from smdebug.rules import Rule

class VanishingGradientRule(Rule):
 def __init__(self, base_trial, threshold=0.0000001):
 super().__init__(base_trial, other_trials=None)
 self.threshold = float(threshold)

Please note that apart from base_trial and other_trials (if required), we require all
arguments of the rule constructor to take a string as value. You can parse them to the type
that you want from the string. This means if you want to pass a list of strings, you might want to pass them as a comma separated string. This restriction is being enforced so as to let you create and invoke rules from json using Sagemaker’s APIs.

Function to invoke at a given step

In this function you can implement the core logic of what you want to do with these tensors.
It should return a boolean value True or False, where True means the rule evaluation condition has been met. When you invoke these rules through SageMaker, the rule evaluation ends when the rule evaluation condition is met. SageMaker creates a Cloudwatch event for every rule evaluation job, which can be used to define actions that you might want to take based on the state of the rule.

A simplified version of the actual invoke function for VanishingGradientRule is below:

 def invoke_at_step(self, step):
 for tensorname in self.base_trial.tensors(collection='gradients'):
 tensor = self.base_trial.tensor(tensorname)
 abs_mean = tensor.reduction_value(step, 'mean', abs=True)
 if abs_mean < self.threshold:
 return True
 else:
 return False

That’s it, writing a rule is as simple as that.

Invoking a rule through SageMaker

After you’ve written your rule, you can ask SageMaker to evaluate the rule against your training job by either using SageMaker Python SDK as

estimator = Estimator(
 ...
 rules = Rules.custom(
 	name='VGRule',
 image_uri='864354269164.dkr.ecr.us-east-1.amazonaws.com/sagemaker-debugger-rule-evaluator:latest',
 	instance_type='ml.t3.medium', # instance type to run the rule evaluation on
 	source='rules/vanishing_gradient_rule.py', # path to the rule source file
 	rule_to_invoke='VanishingGradientRule', # name of the class to invoke in the rule source file
 	volume_size_in_gb=30, # EBS volume size required to be attached to the rule evaluation instance
 	collections_to_save=[CollectionConfig("gradients")], # collections to be analyzed by the rule
 	rule_parameters={
 		"threshold": "20.0" # this will be used to initialize 'threshold' param in your rule constructor
 	}
)

If you’re using the SageMaker API directly to evaluate the rule, then you can specify the rule configuration DebugRuleConfigurations [https://docs.aws.amazon.com/sagemaker/latest/dg/API_DebugRuleConfiguration.html] in the CreateTrainingJob API request as:

"DebugRuleConfigurations": [
	{
		"RuleConfigurationName": "VGRule",
		"InstanceType": "ml.t3.medium",
		"VolumeSizeInGB": 30,
		"RuleEvaluatorImage": "864354269164.dkr.ecr.us-east-1.amazonaws.com/sagemaker-debugger-rule-evaluator:latest",
		"RuleParameters": {
			"source_s3_uri": "s3://path/to/vanishing_gradient_rule.py",
			"rule_to_invoke": "VanishingGradient",
			"threshold": "20.0"
		}
	}
]

Invoking a rule outside of SageMaker through invoke_rule

You might want to invoke the rule locally during development. We provide a function to invoke rules easily. Refer smdebug/rules/rule_invoker.py. The invoke function has the following syntax. It takes a instance of a Rule and invokes it for a series of steps one after the other.

from smdebug.rules import invoke_rule
from smdebug.trials import create_trial

trial = create_trial('s3://smdebug-dev-test/mnist-job/')
rule_obj = VanishingGradientRule(trial, threshold=0.0001)
invoke_rule(rule_obj, start_step=0, end_step=None)

Arguments

	rule_obj (Rule) An instance of a subclass of smdebug.rules.Rule that you want to invoke.

	start_step (int) Global step number to start invoking the rule from. Note that this refers to a global step. This defaults to 0.

	end_step (int or None): Global step number to end the invocation of rule before. To clarify, end_step is an exclusive bound. The rule is invoked at end_step. This defaults to None which means run till the end of the job.

	raise_eval_cond (bool) This parameter controls whether to raise the exception RuleEvaluationConditionMet when raised by the rule, or to catch it and log the message and move to the next step. Defaults to False, which implies that the it catches the exception, logs that the evaluation condition was met for a step and moves on to evaluate the next step.

Exceptions

smdebug is designed to be aware that tensors required to evaluate a rule may not be available at every step. Hence, it raises a few exceptions which allow us to control what happens when a tensor is missing. These are available in the smdebug.exceptions module. You can import them as follows:

from smdebug.exceptions import *

Here are the exceptions (along with others) and their meaning:

	TensorUnavailableForStep : This means that the tensor requested is not available for the step. It may have been or will be saved for a different step number. You can check which steps tensor is saved for by trial.tensor('tname').steps() api [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/analysis.md#steps-1]. Note that this exception implies that the requested tensor will never become available for this step in the future.

	TensorUnavailable : This means that this tensor has not been saved from the training job. Note that if you have a SaveConfig which saves a certain tensor only after the time you queried for the tensor, you might get a TensorUnavailable exception even if the tensor may become available later for some step.

	StepUnavailable: This means that the step was not saved from the training job. No tensor will be available for this step.

	StepNotYetAvailable: This means that the step has not yet been seen from the training job. It may be available in the future if the training is still going on. We automatically load new data as and when it becomes available. This step may either become available in the future, or the exception might change to StepUnavailable.

	NoMoreData : This will be raised when the training ends. Once you see this, you will know that there will be no more steps and no more tensors saved.

	RuleEvaluationConditionMet: This is raised when the rule invocation returns True for some step.

	MissingCollectionFiles: This is raised when no data was saved by the training job. Check that the Hook was configured correctly before starting the training job.

Utils

Enable or disable refresh of tensors in a trial

By default smdebug refreshes tensors each time you try to query the tensor.
It looks for whether this tensor is saved for new steps and if so fetches them.
If you know the saved data will not change (stopped the machine learning job), or
are not interested in the latest data, you can stop the refreshing of tensors as follows:

no_refresh takes a trial or a list of trials, which should not be refreshed.
Anything executed inside the with no_refresh block will not be refreshed.

from smdebug.analysis.utils import no_refresh
with no_refresh(trials):
 pass

Similarly if you want to refresh tensors only within a block, you can do:

from smdebug.analysis.utils import refresh
with refresh(trials):
 pass

During rule invocation smdebug waits till the current step is available and then turns off refresh to ensure that you do not get different results for methods like trial.tensor(name).steps() and run into subtle issues.

Saving Tensors API

	Glossary

	Hook

	Creating a Hook

	Hook when using SageMaker Python SDK

	Configuring Hook using SageMaker Python SDK

	Hook from Python constructor

	Common Hook API

	TensorFlow specific Hook API

	MXNet specific Hook API

	PyTorch specific Hook API

	Modes

	Collection

	SaveConfig

	ReductionConfig

Glossary

The imports assume import smdebug.{tensorflow,pytorch,mxnet,xgboost} as smd.

Step: Step means one the work done by the training job for one batch (i.e. forward and backward pass). (An exception is with TensorFlow’s Session interface, where a step also includes the initialization session run calls). SageMaker Debugger is designed in terms of steps. When to save data is specified using steps as well as the invocation of Rules is on a step-by-step basis.

Hook: The main class to pass as a callback object, or to create callback functions. It keeps track of collections and writes output files at each step. The current hook implementation does not support merging tensors from current job with tensors from previous job(s). Hence ensure that the ‘out_dir’ does not exist prior to instantiating the ‘Hook’ object.

	hook = smd.Hook(out_dir="/tmp/mnist_job")

Mode: One of “train”, “eval”, “predict”, or “global”. Helpful for segmenting data based on the phase
you’re in. Defaults to “global”.

	train_mode = smd.modes.TRAIN

Collection: A group of tensors. Each collection contains its configuration for what tensors are part of it, and when to save them.

	collection = hook.get_collection("losses")

SaveConfig: A Python dict specifying how often to save losses and tensors.

	save_config = smd.SaveConfig(save_interval=10)

ReductionConfig: Allows you to save a reduction, such as ‘mean’ or ‘l1 norm’, instead of the full tensor. Reductions are simple floats.

	reduction_config = smd.ReductionConfig(reductions=['min', 'max', 'mean'], norms=['l1'])

Trial: The main interface to use when analyzing a completed training job. Access collections and tensors. See trials documentation.

	trial = smd.create_trial(out_dir="/tmp/mnist_job")

Rule: A condition to monitor the saved data for. It can trigger an exception when the condition is met, for example a vanishing gradient. See rules documentation.

Hook

Creating a Hook

By using AWS Deep Learning Containers, you can directly run your own training script without any additional effort to make it compatible with the SageMaker Python SDK. For a detailed developer guide for this, see Use Debugger in AWS Containers [https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-container.html].

However, for some advanced use cases where you need access to customized tensors from targeted parts of a training script, you can manually construct the hook object. The smdebug library provides hook classes to make this process simple and compatible with the SageMaker ecosystem and Debugger.

Hook when using the SageMaker Python SDK

If you create a SageMaker job and specify the hook configuration in the SageMaker Estimator API
as described in AWS Docs [https://docs.aws.amazon.com/sagemaker/latest/dg/train-model.html],
the CreateTrainingJob API operation containing the hook configuration will be automatically written to the training container.

To capture tensors from your training model, paste the following code to the top or the main function of the training script.

import smdebug.Framework as smd
hook = smd.HookClass.create_from_json_file()

Depending on your choice of framework, HookClass need to be replaced by one of KerasHook, SessionHook or EstimatorHook for TensorFlow, and Hook for PyTorch, MXNet, and XGBoost.

The framework in smd.Framework import refers to one of tensorflow, mxnet, pytorch, or xgboost.

After choosing a framework and defining the hook object, you need to embed the hooks into target parts of your training script to retrieve tensors and to use with the SageMaker Debugger Python SDK.

For more information about constructing the hook depending on a framework of your choice and adding the hooks to your model, see the following pages.

	TensorFlow hook [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/tensorflow]

	MXNet hook [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/mxnet]

	PyTorch hook [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/pytorch]

	XGBoost hook [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/xgboost]

Configuring Hook using SageMaker Python SDK

After you make the minimal changes to your training script, you can configure the hook with parameters to the SageMaker Debugger API operation, DebuggerHookConfig.

from sagemaker.debugger import DebuggerHookConfig
hook_config = DebuggerHookConfig(
 s3_output_path='s3://smdebug-dev-demo-pdx/mnist',
 hook_parameters={
 "parameter": "value"
 })

The available hook parameters are listed in the following. The meaning of these parameters will be clear as you review the sections of documentation below. Note that all parameters below have to be strings. So for any parameter which accepts a list (such as save_steps, reductions, include_regex), the value needs to be given as strings separated by a comma between them.

dry_run
save_all
include_workers
include_regex
reductions
save_raw_tensor
save_shape
save_interval
save_steps
start_step
end_step
train.save_interval
train.save_steps
train.start_step
train.end_step
eval.save_interval
eval.save_steps
eval.start_step
eval.end_step
predict.save_interval
predict.save_steps
predict.start_step
predict.end_step
global.save_interval
global.save_steps
global.start_step
global.end_step

Hook from Python constructor

See the framework-specific pages for more details.

HookClass below can be one of KerasHook, SessionHook, EstimatorHook for TensorFlow, or is just Hook for MXNet, Pytorch and XGBoost.

hook = HookClass(
 out_dir,
 export_tensorboard = False,
 tensorboard_dir = None,
 dry_run = False,
 reduction_config = None,
 save_config = None,
 include_regex = None,
 include_collections = None,
 save_all = False,
 include_workers="one"
)

Arguments

	out_dir (str): Path where to save tensors and metadata. This is a required argument. Please ensure that the ‘out_dir’ does not exist.

	export_tensorboard (bool): Whether to export TensorBoard summaries (distributions and histograms for tensors saved, and scalar summaries for scalars saved). Defaults to False. Note that when running on SageMaker this parameter will be ignored. You will need to use the TensorBoardOutputConfig section in API to enable TensorBoard summaries. Refer SageMaker page for an example.

	tensorboard_dir (str): Path where to save TensorBoard artifacts. If this is not passed and export_tensorboard is True, then TensorBoard artifacts are saved in out_dir/tensorboard . Note that when running on SageMaker this parameter will be ignored. You will need to use the TensorBoardOutputConfig section in API to enable TensorBoard summaries. Refer SageMaker page for an example.

	dry_run (bool): If true, don’t write any files

	reduction_config: (ReductionConfig object) Specifies the reductions to be applied as default for tensors saved. A collection can have its own ReductionConfig object which overrides this for the tensors which belong to that collection.

	save_config: (SaveConfig object) Specifies when to save tensors. A collection can have its own SaveConfig object which overrides this for the tensors which belong to that collection.

	include_regex (list[str]): list of regex patterns which specify the tensors to save. Tensors whose names match these patterns will be saved

	include_collections (list[str]): List of which collections to save specified by name

	save_all (bool): Saves all tensors and collections. Increases the amount of disk space used, and can reduce the performance of the training job significantly, depending on the size of the model.

	include_workers (str): Used for distributed training. It can take the values one or all. one means only the tensors from one chosen worker will be saved. This is the default behavior. all means tensors from all workers will be saved.

Common Hook API

These methods are common for all hooks in any framework.

Note that smd import below translates to import smdebug.{framework} as smd.

Method	Arguments	Behavior
—	—	—
add_collection(collection)	collection (smd.Collection)	Takes a Collection object and adds it to the CollectionManager that the Hook holds. Note that you should only pass in a Collection object for the same framework as the hook
get_collection(name)	name (str)	Returns collection identified by the given name
get_collections()	-	Returns all collection objects held by the hook
set_mode(mode)	value of the enum smd.modes	Sets mode of the job, can be one of smd.modes.TRAIN, smd.modes.EVAL, smd.modes.PREDICT or smd.modes.GLOBAL. Refer Modes for more on that.
create_from_json_file(
json_file_path=None)	json_file_path (str)	Takes the path of a file which holds the json configuration of the hook, and creates hook from that configuration. This is an optional parameter.
If this is not passed it tries to get the file path from the value of the environment variable SMDEBUG_CONFIG_FILE_PATH and defaults to /opt/ml/input/config/debughookconfig.json. When training on SageMaker you do not have to specify any path because this is the default path that SageMaker writes the hook configuration to.		
close()	-	Closes all files that are currently open by the hook
save_scalar()	name (str)	
value (float)		
sm_metric (bool)	Saves a scalar value by the given name. Passing sm_metric=True flag also makes this scalar available as a SageMaker Metric to show up in SageMaker Studio. Note that when sm_metric is False, this scalar always resides only in your AWS account, but setting it to True saves the scalar also on AWS servers. The default value of sm_metric for this method is False.	
save_tensor()	tensor_name (str), tensor_value (numpy.array or numpy.ndarray), collections_to_write (str or list[str])	Manually save metrics tensors. The record_tensor_value() API is deprecated in favor or save_tensor().

TensorFlow specific Hook API

Note that there are three types of Hooks in TensorFlow: SessionHook, EstimatorHook and KerasHook based on the TensorFlow interface being used for training. This page shows examples of each of these.

| Method | Arguments | Returns | Behavior |
| — | — | — | — |
| wrap_optimizer(optimizer) | optimizer (tf.train.Optimizer or tf.keras.Optimizer) | Returns the same optimizer object passed with a couple of identifying markers to help smdebug. This returned optimizer should be used for training. | When not using Zero Script Change environments, calling this method on your optimizer is necessary for SageMaker Debugger to identify and save gradient tensors. Note that this method returns the same optimizer object passed and does not change your optimization logic. If the hook is of type KerasHook, you can pass in either an object of type tf.train.Optimizer or tf.keras.Optimizer. If the hook is of type SessionHook or EstimatorHook, the optimizer can only be of type tf.train.Optimizer. This new
| add_to_collection(
 collection_name, variable) | collection_name (str) : name of the collection to add to.
 variable parameter to pass to the collection’s add method. | None | Calls the add method of a collection object. See this section for more. |

The following hook APIs are specific to training scripts using the TF 2.x GradientTape ([Example](tensorflow.md#TF 2.x GradientTape example)):

| Method | Arguments | Returns | Behavior |
| — | — | — | — |
| wrap_tape(tape) | tape (tensorflow.python.eager.backprop.GradientTape) | Returns a tape object with three identifying markers to help smdebug. This returned tape should be used for training. | When not using Zero Script Change environments, calling this method on your tape is necessary for SageMaker Debugger to identify and save gradient tensors. Note that this method returns the same tape object passed.

MXNet specific Hook API

Method	Arguments	Behavior
—	—	—
register_block(block)	block (mx.gluon.Block)	Calling this method applies the hook to the Gluon block representing the model, so SageMaker Debugger gets called by MXNet and can save the tensors required.

PyTorch specific Hook API

Method	Arguments	Behavior
—	—	—
register_module(module)	module (torch.nn.Module)	Calling this method applies the hook to the Torch Module representing the model, so SageMaker Debugger gets called by PyTorch and can save the tensors required.
register_loss(loss_module)	loss_module (torch.nn.modules.loss._Loss)	Calling this method applies the hook to the Torch Module representing the loss, so SageMaker Debugger can save losses

Modes

Used to signify which part of training you’re in, similar to Keras modes. GLOBAL mode is used as
a default when no mode was set. Choose from

smdebug.modes.TRAIN
smdebug.modes.EVAL
smdebug.modes.PREDICT
smdebug.modes.GLOBAL

The modes enum is also available under the alias smdebug.{framework}.modes.

Collection

The construct of a Collection groups tensors together. A Collection is identified by a string representing the name of the collection. It can be used to group tensors of a particular kind such as “losses”, “weights”, “biases”, or “gradients”. A Collection has its own list of tensors specified by include regex patterns, and other parameters determining how these tensors should be saved and when. Using collections enables you to save different types of tensors at different frequencies and in different forms. These collections are then also available during analysis so you can query a group of tensors at once.

There are a number of built-in collections that SageMaker Debugger manages by default. This means that the library takes care of identifying what tensors should be saved as part of that collection. You can also define custom collections, to do which there are couple of different ways.

You can specify which of these collections to save in the hook’s include_collections parameter, or through the collection_configs parameter to the DebuggerHookConfig in the SageMaker Python SDK.

Built in Collections

Below is a comprehensive list of the built-in collections that are managed by SageMaker Debugger. The Hook identifes the tensors that should be saved as part of that collection for that framework and saves them if they were requested.

The names of these collections are all lower case strings.

Name	Supported by frameworks/hooks	Description
—	—	—
all	all	Matches all tensors
default	all	It’s a default collection created, which matches the regex patterns passed as include_regex to the Hook
weights	TensorFlow, PyTorch, MXNet	Matches all weights of the model
biases	TensorFlow, PyTorch, MXNet	Matches all biases of the model
gradients	TensorFlow, PyTorch, MXNet	Matches all gradients of the model. In TensorFlow when not using Zero Script Change environments, must use hook.wrap_optimizer().
losses	TensorFlow, PyTorch, MXNet	Saves the loss for the model
metrics	TensorFlow’s KerasHook, XGBoost	For KerasHook, saves the metrics computed by Keras for the model. For XGBoost, the evaluation metrics computed by the algorithm.
outputs	TensorFlow’s KerasHook	Matches the outputs of the model
layers	TensorFlow’s KerasHook	Input and output of intermediate convolutional layers
sm_metrics	TensorFlow	You can add scalars that you want to show up in SageMaker Metrics to this collection. SageMaker Debugger will save these scalars both to the out_dir of the hook, as well as to SageMaker Metric. Note that the scalars passed here will be saved on AWS servers outside of your AWS account.
optimizer_variables	TensorFlow’s KerasHook	Matches all optimizer variables, currently only supported in Keras.
hyperparameters	XGBoost	Booster paramameters [https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost_hyperparameters.html]
predictions	XGBoost	Predictions on validation set (if provided)
labels	XGBoost	Labels on validation set (if provided)
feature_importance	XGBoost	Feature importance given by get_score() [https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.Booster.get_score]
full_shap	XGBoost	A matrix of (nsmaple, nfeatures + 1) with each record indicating the feature contributions (SHAP values [https://github.com/slundberg/shap]) for that prediction. Computed on training data with predict() [https://github.com/slundberg/shap]
average_shap	XGBoost	The sum of SHAP value magnitudes over all samples. Represents the impact each feature has on the model output.
trees	XGBoost	Boosted tree model given by trees_to_dataframe() [https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.Booster.trees_to_dataframe]

Default collections saved

The following collections are saved regardless of the hook configuration.

Framework	Default collections saved
—	—
TensorFlow	METRICS, LOSSES, SM_METRICS
PyTorch	LOSSES
MXNet	LOSSES
XGBoost	METRICS

If for some reason, you want to disable the saving of these collections, you can do so by setting end_step to 0 in the collection’s SaveConfig.
When using the SageMaker Python SDK this would look like

from sagemaker.debugger import DebuggerHookConfig, CollectionConfig
hook_config = DebuggerHookConfig(
 s3_output_path='s3://smdebug-dev-demo-pdx/mnist',
 collection_configs=[
 CollectionConfig(name="metrics", parameters={"end_step": 0})
]
)

When configuring the Collection in your Python script, it would be as follows:

hook.get_collection("metrics").save_config.end_step = 0

Creating or retrieving a Collection

Function	Behavior
—	—
hook.get_collection(collection_name)	Returns the collection with the given name. Creates the collection with default configuration if it doesn’t already exist. A new collection created by default does not match any tensor and is configured to save histograms and distributions along with the tensor if tensorboard support is enabled, and uses the reduction configuration and save configuration passed to the hook.

Properties of a Collection

Property	Description
—	—
tensor_names	Get or set list of tensor names as strings
include_regex	Get or set list of regexes to include. Tensors whose names match these regex patterns will be included in the collection
reduction_config	Get or set the ReductionConfig object to be used for tensors part of this collection
save_config	Get or set the SaveConfig object to be used for tensors part of this collection
save_histogram	Get or set the boolean flag which determines whether to write histograms to enable histograms and distributions in TensorBoard, for tensors part of this collection. Only applicable if TensorBoard support is enabled.

Methods on a Collection

Method	Behavior
—	—
coll.include(regex)	Takes a regex string or a list of regex strings to match tensors to include in the collection.
coll.add(tensor)	(TensorFlow only) Takes an instance or list or set of tf.Tensor/tf.Variable/tf.MirroredVariable/tf.Operation to add to the collection.
coll.add_keras_layer(layer, inputs=False, outputs=True)	(tf.keras only) Takes an instance of a tf.keras layer and logs input/output tensors for that module. By default, only outputs are saved.
coll.add_module_tensors(module, inputs=False, outputs=True)	(PyTorch only) Takes an instance of a PyTorch module and logs input/output tensors for that module. By default, only outputs are saved.
coll.add_block_tensors(block, inputs=False, outputs=True)	(MXNet only) Takes an instance of a Gluon block,and logs input/output tensors for that module. By default, only outputs are saved.

Configuring Collection using SageMaker Python SDK

Parameters to configure Collection are passed as below when using the SageMaker Python SDK.

from sagemaker.debugger import CollectionConfig
coll_config = CollectionConfig(
 name="weights",
 parameters={ "parameter": "value" })

The parameters can be one of the following. The meaning of these parameters will be clear as you review the sections of documentation below. Note that all parameters below have to be strings. So any parameter which accepts a list (such as save_steps, reductions, include_regex), needs to be given as strings separated by a comma between them.

include_regex
save_histogram
reductions
save_raw_tensor
save_interval
save_steps
start_step
end_step
train.save_interval
train.save_steps
train.start_step
train.end_step
eval.save_interval
eval.save_steps
eval.start_step
eval.end_step
predict.save_interval
predict.save_steps
predict.start_step
predict.end_step
global.save_interval
global.save_steps
global.start_step
global.end_step

SaveConfig

The SaveConfig class customizes the frequency of saving tensors.
The hook takes a SaveConfig object which is applied as default to all tensors included.
A collection can also have a SaveConfig object which is applied to the collection’s tensors.
You can also choose to have different configuration for when to save tensors based on the mode of the job.

This class is available in the following namespaces smdebug and smdebug.{framework}.

import smdebug as smd
save_config = smd.SaveConfig(
 mode_save_configs = None,
 save_interval = 100,
 start_step = 0,
 end_step = None,
 save_steps = None,
)

Arguments

	mode_save_configs (dict): Used for advanced cases; see details below.

	save_interval (int): How often, in steps, to save tensors. Defaults to 500. A step is saved if step % save_interval == 0

	start_step (int): When to start saving tensors.

	end_step (int): When to stop saving tensors, exclusive.

	save_steps (list[int]): Specific steps to save tensors at. Union with save_interval.

Examples

	SaveConfig() will save at steps 0, 500, …

	SaveConfig(save_interval=1) will save at steps 0, 1, …

	SaveConfig(save_interval=100, end_step=200) will save at steps 0, 100

	SaveConfig(save_interval=100, end_step=201) will save at steps 0, 100, 200

	SaveConfig(save_interval=100, start_step=150) will save at steps 200, 300, …

	SaveConfig(save_steps=[3, 7]) will save at steps 0, 3, 7, 500, …

Specifying different configuration based on mode

There is also a more advanced use case, where you specify a different SaveConfig for each mode.
It is best understood through an example:

import smdebug as smd
smd.SaveConfig(mode_save_configs={
 smd.modes.TRAIN: smd.SaveConfigMode(save_interval=1),
 smd.modes.EVAL: smd.SaveConfigMode(save_interval=2),
 smd.modes.PREDICT: smd.SaveConfigMode(save_interval=3),
 smd.modes.GLOBAL: smd.SaveConfigMode(save_interval=4)
})

Essentially, create a dictionary mapping modes to SaveConfigMode objects. The SaveConfigMode objects
take the same four parameters (save_interval, start_step, end_step, save_steps) as the main object.
Any mode not specified will default to the default configuration. If a mode is provided but not all
params are specified, we use the default values for non-specified parameters.

Configuration using SageMaker Python SDK

Refer Configuring Hook using SageMaker Python SDK and Configuring Collection using SageMaker Python SDK

ReductionConfig

ReductionConfig allows the saving of certain reductions of tensors instead
of saving the full tensor. The motivation here is to reduce the amount of data
saved, and increase the speed in cases where you don’t need the full
tensor. The reduction operations which are computed in the training process
and then saved.

During analysis, these are available as reductions of the original tensor.
Please note that using reduction config means that you will not have
the full tensor available during analysis, so this can restrict what you can do with the tensor saved. You can choose to also save the raw tensor along with the reductions if you so desire.

The hook takes a ReductionConfig object which is applied as default to all tensors included.
A collection can also have its own ReductionConfig object which is applied
to the tensors belonging to that collection.

import smdebug as smd
reduction_config = smd.ReductionConfig(
 reductions = None,
 abs_reductions = None,
 norms = None,
 abs_norms = None,
 save_raw_tensor = False,
)

Arguments

	reductions (list[str]): Takes names of reductions, choosing from “min”, “max”, “median”, “mean”, “std”, “variance”, “sum”, “prod”

	abs_reductions (list[str]): Same as reductions, except the reduction will be computed on the absolute value of the tensor

	norms (list[str]): Takes names of norms to compute, choosing from “l1”, “l2”

	abs_norms (list[str]): Same as norms, except the norm will be computed on the absolute value of the tensor

	save_raw_tensor (bool): Saves the tensor directly, in addition to other desired reductions

For example,

ReductionConfig(reductions=['std', 'variance'], abs_reductions=['mean'], norms=['l1'])

will save the standard deviation and variance, the mean of the absolute value, and the l1 norm.

Configuration using SageMaker Python SDK

The reductions are passed as part of the “reductions” parameter to HookParameters or Collection Parameters.
Refer Configuring Hook using SageMaker Python SDK and Configuring Collection using SageMaker Python SDK for more on that.

The parameter “reductions” can take a comma separated string consisting of the following values:

min
max
median
mean
std
variance
sum
prod
l1
l2
abs_min
abs_max
abs_median
abs_mean
abs_std
abs_variance
abs_sum
abs_prod
abs_l1
abs_l2

Frameworks

For details on what’s supported for different framework, go here:

	TensorFlow

	PyTorch

	MXNet

	XGBoost

Distributed Training

TODO: Describe distributed training.

Environment Variables

USE_SMDEBUG:

When using official SageMaker Framework Containers [https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html] and AWS Deep Learning Containers [https://aws.amazon.com/machine-learning/containers/] which support the Zero Script Change experience, SageMaker Debugger can be disabled by setting this variable to 0. In such a case, the hook is disabled regardless of what configuration is given to the job through the SageMaker Python SDK. By default this is set to 1 signifying True.

SMDEBUG_CONFIG_FILE_PATH:

Contains the path to the JSON file that describes the smdebug hook.

At the minimum, the JSON config should contain the path where smdebug should output tensors.
Example:

{ "LocalPath": "/my/smdebug_hook/path" }

In SageMaker environment, this path is set to point to a pre-defined location containing a valid JSON.
In non-SageMaker environment, SageMaker-Debugger is not used if this environment variable is not set and
a hook is not created manually.

Sample JSON from which a hook can be created:

{
 "LocalPath": "/my/smdebug_hook/path",
 "HookParameters": {
 "save_all": false,
 "include_regex": "regex1,regex2",
 "save_interval": "100",
 "save_steps": "1,2,3,4",
 "start_step": "1",
 "end_step": "1000000",
 "reductions": "min,max,mean"
 },
 "CollectionConfigurations": [
 {
 "CollectionName": "collection_obj_name1",
 "CollectionParameters": {
 "include_regex": "regexe5*",
 "save_interval": 100,
 "save_steps": "1,2,3",
 "start_step": 1,
 "reductions": "min"
 }
 },
]
}

TENSORBOARD_CONFIG_FILE_PATH:

Contains the path to the JSON file that specifies where TensorBoard artifacts need to
be placed.

Sample JSON file:

{ "LocalPath": "/my/tensorboard/path" }

In SageMaker environment, the presence of this JSON is necessary to log any Tensorboard artifact.
By default, this path is set to point to a pre-defined location in SageMaker.

tensorboard_dir can also be passed while creating the hook using the API or
in the JSON specified in SMDEBUG_CONFIG_FILE_PATH. For this, export_tensorboard should be set to True.
This option to set tensorboard_dir is available in both, SageMaker and non-SageMaker environments.

CHECKPOINT_CONFIG_FILE_PATH:

Contains the path to the JSON file that specifies where training checkpoints need to
be placed. This is used in the context of spot training.

Sample JSON file:

{ "LocalPath": "/my/checkpoint/path" }

In SageMaker environment, the presence of this JSON is necessary to save checkpoints.
By default, this path is set to point to a pre-defined location in SageMaker.

SAGEMAKER_METRICS_DIRECTORY:

Contains the path to the directory where metrics will be recorded for consumption by SageMaker Metrics.
This is relevant only in SageMaker environment, where this variable points to a pre-defined location.

Note: The environment variables below are applicable for versions > 0.4.14

SMDEBUG_TRAINING_END_DELAY_REFRESH:

During analysis, a trial is created to query for tensors from a specified directory. This
directory contains collections, events, and index files. This environment variable
specifies how many seconds to wait before refreshing the index files to check if training has ended
and the tensor is available. By default value, this value is set to 1.

SMDEBUG_INCOMPLETE_STEP_WAIT_WINDOW:

During analysis, a trial is created to query for tensors from a specified directory. This
directory contains collections, events, and index files. A trial checks to see if a step
specified in the smdebug hook has been completed. This environment variable
specifies the maximum number of incomplete steps that the trial will wait for before marking
half of them as complete. Default: 1000

SMDEBUG_MISSING_EVENT_FILE_RETRY_LIMIT:

During analysis, a trial is created to query for tensors from a specified directory. This
directory contains collections, events, and index files. All the tensor data is stored in the event files.
When tensor data contained in an event file that is not available has been requested, this variable specifcies
the number of times we retry the request.

MXNet

Contents

	Support

	How to Use

	Example

	Full API

Support

	Zero Script Change experience where you need no modifications to your training script is supported in the official AWS Deep Learning Container for MXNet [https://github.com/aws/deep-learning-containers/blob/master/available_images.md#general-framework-containers].

	This library itself supports the following versions when you use our API which requires a few minimal changes to your training script: MXNet 1.4, 1.5, 1.6, and 1.7.

	Only Gluon models are supported

	When the Gluon model is hybridized, inputs and outputs of intermediate layers can not be saved

	Parameter server based distributed training is not yet supported

How to Use

Using Zero Script Change containers

In this case, you don’t need to do anything to get the hook running. You are encouraged to configure the hook from the SageMaker python SDK so you can run different jobs with different configurations without having to modify your script. If you want access to the hook to configure certain things which can not be configured through the SageMaker SDK, you can retrieve the hook as follows.

import smdebug.mxnet as smd
hook = smd.Hook.create_from_json_file()

Note that you can create the hook from smdebug’s python API as is being done in the next section even in such containers.

Bring your own container experience

1. Create a hook

If using SageMaker, you will configure the hook in SageMaker’s python SDK using the Estimator class. Instantiate it with
smd.Hook.create_from_json_file(). Otherwise, call the hook class constructor, smd.Hook().

2. Register the model to the hook

Call hook.register_block(net).

3. Take actions using the hook APIs

For a full list of actions that the hook APIs offer to construct hooks and save tensors, see Common hook API [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#common-hook-api] and MXNet specific hook API [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#mxnet-specific-hook-api].

Example

#######################################
Creating a hook. Refer `API for Saving Tensors` page for more on this
import smdebug.mxnet as smd
hook = smd.Hook(out_dir=args.out_dir)
#######################################

import mxnet as mx
from mxnet import gluon
from mxnet import autograd as ag
from mxnet.gluon import nn
net = nn.HybridSequential()
net.add(
 nn.Dense(128, activation='relu'),
 nn.Dense(64, activation='relu'),
 nn.Dense(10, activation="relu"),
)
net.initialize(init=init.Xavier(), ctx=mx.cpu())
softmax_cross_entropy_loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': args.lr})

#######################################
Here we register the block to smdebug
hook.register_block(net)
#######################################

batch_size = 100
mnist = mx.test_utils.get_mnist()
train_data = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], batch_size, shuffle=True)
val_data = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size)

for i in range(args.epochs):
 # Reset the train data iterator.
 train_data.reset()
 # Loop over the train data iterator.
 for batch in train_data:
 data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0)
 label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)
 outputs = []
 with ag.record():
 for x, y in zip(data, label):
 z = net(x)
 loss = softmax_cross_entropy_loss(z, y)
 loss.backward()
 outputs.append(z)
 metric.update(label, outputs)
 trainer.step(batch.data[0].shape[0])
 name, acc = metric.get()
 metric.reset()

Full API

See the API for Saving Tensors page for details about Hook, Collection, SaveConfig, and ReductionConfig

See the Analysis page for details about analyzing a training job.

PyTorch

Contents

	Support

	How to Use

	Module Loss Example

	Functional Loss Example

	Full API

Support

Versions

	Zero Script Change experience where you need no modifications to your training script is supported in the official AWS Deep Learning Container for PyTorch [https://github.com/aws/deep-learning-containers/blob/master/available_images.md#general-framework-containers].

	The library itself supports the following versions when using changes to the training script: PyTorch 1.2, 1.3, 1.4, 1.5, and 1.6.

How to Use

Using Zero Script Change containers

In this case, you don’t need to do anything to get the hook running. You are encouraged to configure the hook from the SageMaker python SDK so you can run different jobs with different configurations without having to modify your script. If you want access to the hook to configure certain things which can not be configured through the SageMaker SDK, you can retrieve the hook as follows.

import smdebug.pytorch as smd
hook = smd.Hook.create_from_json_file()

Note that you can create the hook from smdebug’s python API as is being done in the next section even in such containers.

Bring your own container experience

1. Create a hook

If using SageMaker, you will configure the hook in SageMaker’s python SDK using the Estimator class. Instantiate it with
smd.Hook.create_from_json_file(). Otherwise, call the hook class constructor, smd.Hook().

2. Register the model to the hook

Call hook.register_module(net).

3. Register your loss function to the hook

If using a loss which is a subclass of nn.Module, call hook.register_loss(loss_criterion) once before starting training.If using a loss which is a subclass of nn.functional, call hook.record_tensor_value(loss) after each training step.

4. Take actions using the hook APIs

For a full list of actions that the hook APIs offer to construct hooks and save tensors, see Common hook API [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#common-hook-api] and PyTorch specific hook API [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#pytorch-specific-hook-api].

Module Loss Example

#######################################
Creating a hook. Refer `API for Saving Tensors` page for more on this
import smdebug.pytorch as smd
hook = smd.Hook(out_dir=args.out_dir)
#######################################

class Model(nn.Module)
 def __init__(self):
 super().__init__()
 self.fc = nn.Linear(784, 10)

 def forward(self, x):
 return F.relu(self.fc(x))

net = Model()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=args.lr)

#######################################
Register the hook and the loss
hook.register_module(net)
hook.register_loss(criterion)
#######################################

Training loop as usual
for (inputs, labels) in trainloader:
 optimizer.zero_grad()
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()

Functional Loss Example

#######################################
Register the hook and the loss
import smdebug.pytorch as smd
hook = smd.Hook(out_dir=args.out_dir)
#######################################

class Model(nn.Module)
 def __init__(self):
 super().__init__()
 self.fc = nn.Linear(784, 10)

 def forward(self, x):
 return F.relu(self.fc(x))

net = Model()
optimizer = optim.Adam(net.parameters(), lr=args.lr)

#######################################
Register the hook
hook.register_module(net)
#######################################

Training loop, recording the loss at each iteration
for (inputs, labels) in trainloader:
 optimizer.zero_grad()
 outputs = net(inputs)
 loss = F.cross_entropy(outputs, labels)

 #######################################
 # Manually record the loss
 hook.record_tensor_value(tensor_name="loss", tensor_value=loss)
 #######################################

 loss.backward()
 optimizer.step()

Full API

See the API for Saving Tensors page for details about Hook, Collection, SaveConfig, and ReductionConfig.
See the Analysis page for details about analyzing a training job.

Running SageMaker jobs with Amazon SageMaker Debugger

Outline

	Configuring SageMaker Debugger

	Saving data

	Saving built-in collections that we manage

	Saving reductions for a custom collection

	Enabling TensorBoard summaries

	Rules

	Built In Rules

	Custom Rules

	Interactive Exploration

	SageMaker Studio

	TensorBoard Visualization

	Example Notebooks

Configuring SageMaker Debugger

Regardless of which of the two above ways you have enabled SageMaker Debugger, you can configure it using the SageMaker python SDK. There are two aspects to this configuration.

	You can specify what tensors to be saved, when they should be saved and in what form they should be saved.

	You can specify which Rule you want to monitor your training job with. This can be either a built in rule that SageMaker provides, or a custom rule that you can write yourself.

Saving Data

SageMaker Debugger gives you a powerful and flexible API to save the tensors you choose at the frequencies you want. These configurations are made available in the SageMaker Python SDK through the DebuggerHookConfig class.

Saving built-in collections that we manage

Learn more about these built in collections here.

from sagemaker.debugger import DebuggerHookConfig, CollectionConfig
hook_config = DebuggerHookConfig(
 s3_output_path='s3://smdebug-dev-demo-pdx/mnist',
 hook_parameters={
 "save_interval": 100
 },
 collection_configs=[
 CollectionConfig("weights"),
 CollectionConfig("gradients"),
 CollectionConfig("losses"),
 CollectionConfig(
 name="biases",
 parameters={
 "save_interval": 10,
 "end_step": 500
 }
),
]
)
import sagemaker as sm
sagemaker_estimator = sm.tensorflow.TensorFlow(
 entry_point='src/mnist.py',
 role=sm.get_execution_role(),
 base_job_name='smdebug-demo-job',
 train_instance_count=1,
 train_instance_type="ml.m4.xlarge",
 framework_version="1.15",
 py_version="py3",
 # smdebug-specific arguments below
 debugger_hook_config=hook_config
)
sagemaker_estimator.fit()

Saving reductions for a custom collection

You can define your collection of tensors. You can also choose to save certain reductions of tensors only instead of saving the full tensor. You may choose to do this to reduce the amount of data saved. Please note that when you save reductions, unless you pass the flag save_raw_tensor, only these reductions will be available for analysis. The raw tensor will not be saved.

from sagemaker.debugger import DebuggerHookConfig, CollectionConfig
hook_config = DebuggerHookConfig(
 s3_output_path='s3://smdebug-dev-demo-pdx/mnist',
 collection_configs=[
 CollectionConfig(
 name="activations",
 parameters={
 "include_regex": "relu|tanh",
 "reductions": "mean,variance,max,abs_mean,abs_variance,abs_max"
 })
]
)
import sagemaker as sm
sagemaker_estimator = sm.tensorflow.TensorFlow(
 entry_point='src/mnist.py',
 role=sm.get_execution_role(),
 base_job_name='smdebug-demo-job',
 train_instance_count=1,
 train_instance_type="ml.m4.xlarge",
 framework_version="1.15",
 py_version="py3",
 # smdebug-specific arguments below
 debugger_hook_config=hook_config
)
sagemaker_estimator.fit()

Enabling TensorBoard summaries

SageMaker Debugger can automatically generate tensorboard scalar summaries,
distributions and histograms for tensors saved. This can be enabled by
passing a TensorBoardOutputConfig object when creating an Estimator as follows.
You can also choose to disable or enable histograms specifically for different collections.
By default a collection has save_histogram flag set to True.
Note that scalar summaries are added to TensorBoard for all ScalarCollections and any scalar saved through hook.save_scalar.
Refer API for more details on scalar collections and save_scalar method.

The below example saves weights and gradients as full tensors, and also saves the gradients as histograms and distributions to visualize in TensorBoard.
These will be saved to the location passed in TensorBoardOutputConfig object.

from sagemaker.debugger import DebuggerHookConfig, CollectionConfig, TensorBoardOutputConfig
hook_config = DebuggerHookConfig(
 s3_output_path='s3://smdebug-dev-demo-pdx/mnist',
 collection_configs=[
 CollectionConfig(
 name="weights",
 parameters={"save_histogram": False}),
 CollectionConfig(name="gradients"),
]
)

tb_config = TensorBoardOutputConfig('s3://smdebug-dev-demo-pdx/mnist/tensorboard')

import sagemaker as sm
sagemaker_estimator = sm.tensorflow.TensorFlow(
 entry_point='src/mnist.py',
 role=sm.get_execution_role(),
 base_job_name='smdebug-demo-job',
 train_instance_count=1,
 train_instance_type="ml.m4.xlarge",
 framework_version="1.15",
 py_version="py3",
 # smdebug-specific arguments below
 debugger_hook_config=hook_config,
 tensorboard_output_config=tb_config
)
sagemaker_estimator.fit()

For more details, refer our API page.

Rules

Here are some examples on how to run Rules with your training jobs.

Note that passing a CollectionConfig object to the Rule as collections_to_save
is equivalent to passing it to the DebuggerHookConfig object as collection_configs.
This is just a shortcut for your convenience.

Built-in Rules

To find a full list of built-in rules that you can use with the SageMaker Python SDK, see the List of Debugger Built-in Rules [https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html] page.

Running built-in SageMaker Rules

You can run a SageMaker built-in Rule as follows using the Rule.sagemaker method.
The first argument to this method is the base configuration that is associated with the Rule.
We configure them as much as possible.
You can take a look at the ruleconfigs that we populate for all built-in rules here [https://github.com/awslabs/sagemaker-debugger-rulesconfig].
You can choose to customize these parameters using the other parameters.

These rules are run on our pre-built Docker images which are listed here [https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-docker-images-rules.html].
You are not charged for the instances when running SageMaker built-in rules.

A list of all our built-in rules are provided below.

from sagemaker.debugger import Rule, CollectionConfig, rule_configs

exploding_tensor_rule = Rule.sagemaker(
 base_config=rule_configs.exploding_tensor(),
 rule_parameters={"collection_names": "weights,losses"},
 collections_to_save=[
 CollectionConfig("weights"),
 CollectionConfig("losses")
]
)

vanishing_gradient_rule = Rule.sagemaker(
 base_config=rule_configs.vanishing_gradient()
)

import sagemaker as sm
sagemaker_estimator = sm.tensorflow.TensorFlow(
 entry_point='src/mnist.py',
 role=sm.get_execution_role(),
 base_job_name='smdebug-demo-job',
 train_instance_count=1,
 train_instance_type="ml.m4.xlarge",
 framework_version="1.15",
 py_version="py3",
 # smdebug-specific arguments below
 rules=[exploding_tensor_rule, vanishing_gradient_rule]
)
sagemaker_estimator.fit()

Custom Rules

You can write your own rule custom made for your application and provide it, so SageMaker can monitor your training job using your rule. To do so, you need to understand the programming model that smdebug provides. Our page on Programming Model for Analysis describes the APIs that we provide to help you write your own rule.
Please refer to this example notebook [https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-debugger/tensorflow_keras_custom_rule/tf-keras-custom-rule.ipynb] for a demonstration of creating your custom rule and running it on SageMaker.

Running custom Rules

To run a custom rule, you have to provide a few additional parameters.
Key parameters to note are a file which has the implementation of your Rule class source,
the name of the Rule class (rule_to_invoke), the type of instance to run the Rule job on (instance_type),
the size of the volume on that instance (volume_size_in_gb), and the docker image to use for running this job (image_uri).

Please refer to the documentation here [https://github.com/aws/sagemaker-python-sdk/blob/391733efd433c5e26afb56102c76ab7472f94b3d/src/sagemaker/debugger.py#L190] for more details.

We have pre-built Docker images that you can use to run your custom rules.
These are listed here [https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-docker-images-rules.html].
You can also choose to build your own Docker image for custom rule evaluation.
Please refer to the repository SageMaker Debugger Rules Container [https://github.com/awslabs/sagemaker-debugger-rules-container] for instructions on how to build such an image.

from sagemaker.debugger import Rule, CollectionConfig

custom_coll = CollectionConfig(
 name="relu_activations",
 parameters={
 "include_regex": "relu",
 "save_interval": 500,
 "end_step": 5000
 })
improper_activation_rule = Rule.custom(
 name='improper_activation_job',
 image_uri='552407032007.dkr.ecr.ap-south-1.amazonaws.com/sagemaker-debugger-rule-evaluator:latest',
 instance_type='ml.c4.xlarge',
 volume_size_in_gb=400,
 source='rules/custom_rules.py',
 rule_to_invoke='ImproperActivation',
 rule_parameters={"collection_names": "relu_activations"},
 collections_to_save=[custom_coll]
)

import sagemaker as sm
sagemaker_estimator = sm.tensorflow.TensorFlow(
 entry_point='src/mnist.py',
 role=sm.get_execution_role(),
 base_job_name='smdebug-demo-job',
 train_instance_count=1,
 train_instance_type="ml.m4.xlarge",
 framework_version="1.15",
 py_version="py3",
 # smdebug-specific arguments below
 rules=[improper_activation_rule],
)
sagemaker_estimator.fit()

For more details, refer our Analysis page.

Interactive Exploration

smdebug SDK also allows you perform interactive and real-time exploration of the data saved. You can choose to inspect the tensors saved, or visualize them through your custom plots.
You can retrieve these tensors as numpy arrays allowing you to use your favorite analysis libraries right in a SageMaker notebook instance. We have couple of example notebooks demonstrating this.

	Real-time anaysis in a notebook during training [https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-debugger/mxnet_realtime_analysis/mxnet-realtime-analysis.ipynb]

	Interactive tensor analysis in a notebook [https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-debugger/mnist_tensor_analysis/mnist_tensor_analysis.ipynb]

SageMaker Studio

SageMaker Debugger is on by default for supported training jobs on the official SageMaker Framework containers (or AWS Deep Learning Containers) during SageMaker training jobs.
In this default scenario, SageMaker Debugger takes the losses and metrics from your training job and publishes them to SageMaker Metrics, allowing you to track these metrics in SageMaker Studio.
You can also see the status of Rules you have enabled for your training job right in the Studio. Here [https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-visualization.html] are screenshots of that experience.

TensorBoard Visualization

If you have enabled TensorBoard outputs for your training job through SageMaker Debugger, TensorBoard artifacts will automatically be generated for the tensors saved.
You can then point your TensorBoard instance to that S3 location and review the visualizations for the tensors saved.

Example Notebooks

We have a bunch of example notebooks [https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger] here demonstrating different aspects of SageMaker Debugger.

Tensorflow

Contents

	What SageMaker Debugger Supports

	Debugger on AWS Deep Learning Containers with TensorFlow

	Debugger Built-in Tensor Collections for TensorFlow

	Debugger on SageMaker Training Containers and Custom Containers

	Code Examples

	References

Amazon SageMaker Debugger Support for TensorFlow[bookmark: support]

Amazon SageMaker Debugger python SDK and its client library smdebug now fully support TensorFlow 2.3 with the latest version release.

Using Debugger, you can access tensors of any kind for TensorFlow models, from the Keras model zoo to your own custom model, and save them using Debugger built-in or custom tensor collections. You can run your training script on the official AWS Deep Learning Containers [https://github.com/aws/deep-learning-containers/blob/master/available_images.md#general-framework-containers] where Debugger can automatically capture tensors from your training job. It doesn’t matter whether your TensorFlow models use Keras API or pure TensorFlow API (in eager mode or non-eager mode), you can directly run them on the AWS Deep Learning Containers.

Debugger and its client library smdebug support debugging your training job on other AWS training containers and custom containers. In this case, a hook registration process is required to manually add the hook features to your training script. For a full list of AWS TensorFlow containers to use Debugger, see SageMaker containers to use Debugger with script mode [https://docs.aws.amazon.com/sagemaker/latest/dg/train-debugger.html#debugger-supported-aws-containers]. For a complete guide for using custom containers, see Use Debugger in Custom Training Containers [https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-bring-your-own-container.html].

New Features supported by Debugger

	The latest TensorFlow version fully covered by Debugger is 2.3.0

	Debug training jobs with the TensorFlow framework or Keras TensorFlow

	Debug training jobs with the TensorFlow eager or non-eager mode

	New built-in tensor collections: inputs, outputs, layers, gradients

	New hook APIs to save tensors, in addition to scalars: save_tensors, save_scalar

Using Debugger on AWS Deep Learning Containers with TensorFlow[bookmark: debugger-dlc]

The Debugger built-in rules and hook features are fully integrated with the AWS Deep Learning Containers. You can run your training script without any script changes. When running training jobs on those Deep Learning Containers, Debugger registers its hooks automatically to your training script in order to retrieve tensors. To find a comprehensive guide of using the high-level SageMaker TensorFlow estimator with Debugger, see Amazon SageMaker Debugger with TensorFlow [https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-container.html#debugger-zero-script-change-TensorFlow] in the Amazon SageMaker Developer Guide.

The following code example provides the base structure for a SageMaker TensorFlow estimator with Debugger.

from sagemaker.tensorflow import TensorFlow
from sagemaker.debugger import Rule, DebuggerHookConfig, CollectionConfig, rule_configs

tf_estimator = TensorFlow(
 entry_point = "tf-train.py",
 role = "SageMakerRole",
 train_instance_count = 1,
 train_instance_type = "ml.p2.xlarge",
 framework_version = "2.2.0",
 py_version = "py37"

 # Debugger-specific Parameters
 rules = [
 Rule.sagemaker(rule_configs.vanishing_gradient()),
 Rule.sagemaker(rule_configs.loss_not_decreasing()),
 ...
],
 debugger_hook_config = DebuggerHookConfig(
 CollectionConfig(name="inputs"),
 CollectionConfig(name="outputs"),
 CollectionConfig(name="layers"),
 CollectionConfig(name="gradients")
 ...
)
)
tf_estimator.fit("s3://bucket/path/to/training/data")

Note: The SageMaker TensorFlow estimator and the Debugger collections in the example are based on the SageMaker python SDK v2 and smdebug v0.9.2. It is highly recommended to upgrade the packages by executing the following command line.

pip install -U sagemaker
pip install -U smdebug

If you are using Jupyter Notebook, put exclamation mark at the front of the code lines and restart your kernel.

Available Tensor Collections for TensorFlow

Note: The SageMaker TensorFlow estimator and the Debugger collections in this example are based on the latest smdebug library. We highly recommend that you upgrade the packages by running the following commands at the command line:

pip install -U sagemaker
pip install -U smdebug

If you are using a Jupyter Notebook, put an exclamation mark (!) at the beginning of the code string and restart your kernel. For more information about the SageMaker Python SDK, see Use Version 2.x of the SageMaker Python SDK [https://sagemaker.readthedocs.io/en/stable/v2.html].

Debugger Built-in Tensor Collections for TensorFlow[bookmark: tf-built-in-collection]

The following table lists the pre-configured tensor collections for TensorFlow models. You can pick any tensor collections by specifying the name parameter of CollectionConfig() as shown in the previous base code example. SageMaker Debugger will save these tensors to the default out_dir of the hook.

Name	Description
—	—
all	Matches all tensors.
default	Includes metrics, losses, and sm_metrics.
metrics	For KerasHook, saves the metrics computed by Keras for the model.
losses	Saves all losses of the model.
sm_metrics	Saves scalars that you want to include in the SageMaker metrics collection.
inputs	Matches all model inputs to the model.
outputs	Matches all model outputs of the model, such as predictions (logits) and labels.
layers	Matches all inputs and outputs of intermediate layers.
gradients	Matches all gradients of the model.
weights	Matches all weights of the model.
biases	Matches all biases of the model.
optimizer_variables	Matches all optimizer variables, currently only supported for Keras.

For more information about adjusting the tensor collection parameters, see Save Tensors Using Debugger Modified Built-in Collections [https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-data.html#debugger-save-modified-built-in-collections].

For a full list of available tensor collection parameters, see Configuring Collection using SageMaker Python SDK [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#configuring-collection-using-sagemaker-python-sdk].

Note: The inputs, outputs, gradients, and layers built-in collections are currently available for TensorFlow versions <2.0 and ==2.2.0.

Using Debugger on SageMaker Training Containers and Custom Containers[bookmark: debugger-script-change]

If you want to run your own training script or custom containers other than the AWS Deep Learning Containers in the previous option, you can use any of the following options:

	Option 1 - Use the SageMaker TensorFlow training containers with training script modification

	Option 2 - Use your custom container with modified training script and push the container to Amazon ECR.

For both options, you need to manually register the Debugger hook to your training script. Depending on the TensorFlow and Keras API operations used to construct your model, you need to pick the right TensorFlow hook class, register the hook, and then save the tensors.

	Create a hook

	KerasHook

	SessionHook

	EstimatorHook

	Wrap the optimizer and the gradient tape with the hook to retrieve gradient tensors

	Register the hook to model.fit()

Step 1: Create a hook[bookmark: create-a-hook]

To create the hook constructor, add the following code to your training script. This enables the smdebug tools for TensorFlow and creates a TensorFlow hook object. When you run the fit() API for training, specify the smdebug hook as callbacks, as shown in the following subsections.

Depending on the TensorFlow versions and the Keras API that you use in your training script, you need to choose the right hook class. The hook constructors for TensorFlow that you can choose are smd.KerasHook, smd.SessionHook, and smd.EstimatorHook.

KerasHook

If you use the Keras model zoo and a Keras model.fit() API, use KerasHook. KerasHook is available for the Keras model with the TensorFlow backend interface. KerasHook covers the eager execution modes and the gradient tape features that are introduced in the TensorFlow framework version 2.0. You can set the smdebug Keras hook constructor by adding the following code to your training script. Place this code line before model.compile():

import smdebug.tensorflow as smd
hook = smd.KerasHook.create_from_json_file()

To learn how to fully implement the hook in your training script, see the Keras with the TensorFlow gradient tape and the smdebug hook example scripts [https://github.com/awslabs/sagemaker-debugger/tree/master/examples/tensorflow2/scripts].

Note: If you use the AWS Deep Learning Containers for zero script change, Debugger collects most of the tensors through its high-level API, regardless of the eager execution modes.

SessionHook

If your model is created in TensorFlow version 1.x with the low-level approach (not using the Keras API), use SessionHook. SessionHook is for the TensorFlow 1.x monitored training session API, tf.train.MonitoredSessions(), as shown following:

import smdebug.tensorflow as smd
hook = smd.SessionHook.create_from_json_file()

To learn how to fully implement the hook into your training script, see the TensorFlow monitored training session with the smdebug hook example script [https://github.com/awslabs/sagemaker-debugger/blob/master/examples/tensorflow/sagemaker_byoc/simple.py].

Note: The official TensorFlow library deprecated the tf.train.MonitoredSessions() API in favor of tf.function() in TensorFlow 2.0 and later. You can use SessionHook for tf.function() in TensorFlow 2.0 and later.

EstimatorHook

If you have a model using the tf.estimator() API, use EstimatorHook. EstimatorHook is available for any TensorFlow framework versions that support the tf.estimator() API, as shown following:

import smdebug.tensorflow as smd
hook = smd.EstimatorHook.create_from_json_file()

To learn how to fully implement the hook into your training script, see the simple MNIST training script with the Tensorflow estimator [https://github.com/awslabs/sagemaker-debugger/blob/master/examples/tensorflow/sagemaker_byoc/simple.py].

Step 2: Wrap the optimizer and the gradient tape to retrieve gradient tensors[bookmark: wrap-opt-with-hook]

The smdebug TensorFlow hook provides tools to manually retrieve gradients tensors specific to the TensorFlow framework.

If you want to save gradients (for example, from the Keras Adam optimizer) wrap it with the hook as shown following:

optimizer = tf.keras.optimizers.Adam(learning_rate=args.lr)
optimizer = hook.wrap_optimizer(optimizer)

If you want to save gradients and outputs tensors from the TensorFlow GradientTape feature, wrap tf.GradientTape with the smdebug hook.wrap_tape method and save using the hook.save_tensor function. The input of hook.save_tensor is in (tensor_name, tensor_value, collections_to_write=”default”) format. For example:

with hook.wrap_tape(tf.GradientTape(persistent=True)) as tape:
 logits = model(data, training=True)
 loss_value = cce(labels, logits)
hook.save_tensor("y_labels", labels, "outputs")
hook.save_tensor("predictions", logits, "outputs")
grads = tape.gradient(loss_value, model.variables)
hook.save_tensor("grads", grads, "gradients")

These smdebug hook wrapper functions capture the gradient tensors, not affecting your optimization logic at all.

For examples of code structures that you can use to apply the hook wrappers, see the Code Examples section.

Step 3: Register the hook to model.fit()[bookmark: register-a-hook]

To collect the tensors from the hooks that you registered, add callbacks=[hook] to the Keras model.fit() API. This will pass the SageMaker Debugger hook as a Keras callback. Similarly, add hooks=[hook] to the MonitoredSession(), tf.function(), and tf.estimator() APIs. For example:

model.fit(X_train, Y_train,
 batch_size=batch_size,
 epochs=epoch,
 validation_data=(X_valid, Y_valid),
 shuffle=True,
 # smdebug modification: Pass the hook as a Keras callback
 callbacks=[hook])

Step 4: Perform actions using the hook APIs

For a full list of actions that the hook APIs offer to construct hooks and save tensors, see Common hook API [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#common-hook-api] and TensorFlow specific hook API [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#tensorflow-specific-hook-api].

Code Examples[bookmark: examples]

The following code examples show the base structures that you can use for hook registration in various TensorFlow training scripts. If you want to use the high-level Debugger features with zero script change on AWS Deep Learning Containers, see Use Debugger in AWS Containers [https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-container.html].

Keras API (tf.keras)

The following code example shows how to register the smdebug KerasHook for the Keras model.fit(). You can also set the hook mode to track stored tensors in different phases of training job. For a list of available hook modes, see smdebug modes.

import smdebug.tensorflow as smd

hook = smd.KerasHook.create_from_json_file()

model = tf.keras.models.Sequential([...])
model.compile(
 optimizer='adam',
 loss='sparse_categorical_crossentropy',
)
Add the hook as a callback
Set hook.set_mode to set tensors to be stored in different phases of training job, such as TRAIN and EVAL
hook.set_mode(mode=smd.modes.TRAIN)
model.fit(x_train, y_train, epochs=args.epochs, callbacks=[hook])

hook.set_mode(mode=smd.modes.EVAL)
model.evaluate(x_test, y_test, callbacks=[hook])

Keras GradientTape example for TensorFlow 2.0 and later

The following code example shows how to register the smdebug KerasHook by wrapping the TensorFlow GradientTape() with the smdebug hook.wrap_tape() API.

import smdebug.tensorflow as smd

hook = smd.KerasHook.create_from_json_file()

model = tf.keras.models.Sequential([...])
 for epoch in range(n_epochs):
 for data, labels in dataset:
 dataset_labels = labels
 # wrap the tape to capture tensors
 with hook.wrap_tape(tf.GradientTape(persistent=True)) as tape:
 logits = model(data, training=True) # (32,10)
 loss_value = cce(labels, logits)
 grads = tape.gradient(loss_value, model.variables)
 opt.apply_gradients(zip(grads, model.variables))
 acc = train_acc_metric(dataset_labels, logits)
 # manually save metric values
 hook.save_tensor(tensor_name="accuracy", tensor_value=acc, collections_to_write="default")

Monitored Session (tf.train.MonitoredSession)

The following code example shows how to register the smdebug SessionHook.

import smdebug.tensorflow as smd

hook = smd.SessionHook.create_from_json_file()

loss = tf.reduce_mean(tf.matmul(...), name="loss")
optimizer = tf.train.AdamOptimizer(args.lr)

Wrap the optimizer
optimizer = hook.wrap_optimizer(optimizer)

Add the hook as a callback
sess = tf.train.MonitoredSession(hooks=[hook])

sess.run([loss, ...])

Estimator (tf.estimator.Estimator)

The following code example shows how to register the smdebug EstimatorHook. You can also set the hook mode to track stored tensors in different phases of training job. For a list of available hook modes, see smdebug modes.

import smdebug.tensorflow as smd

hook = smd.EstimatorHook.create_from_json_file()

train_input_fn, eval_input_fn = ...
estimator = tf.estimator.Estimator(...)

Set hook.set_mode to set tensors to be stored in different phases of training job, such as TRAIN and EVAL
hook.set_mode(mode=smd.modes.TRAIN)
estimator.train(input_fn=train_input_fn, steps=args.steps, hooks=[hook])

hook.set_mode(mode=smd.modes.EVAL)
estimator.evaluate(input_fn=eval_input_fn, steps=args.steps, hooks=[hook])

References

The smdebug API for saving tensors

See the API for saving tensors page for details about the Hooks, Collection, SaveConfig, and ReductionConfig.
See the Analysis page for details about analyzing a training job.

TensorFlow References

	TF 1.x:

	tf.estimator [https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/estimator]

	tf.keras [https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras]

	tf.train.MonitoredSession [https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/MonitoredSession?hl=en]

	TF 2.1:

	tf.estimator [https://www.tensorflow.org/versions/r2.1/api_docs/python/tf/estimator]

	tf.keras [https://www.tensorflow.org/versions/r2.1/api_docs/python/tf/keras]

	TF 2.2:

	tf.estimator [https://www.tensorflow.org/api_docs/python/tf/estimator]

	tf.keras [https://www.tensorflow.org/versions/r2.2/api_docs/python/tf]

XGBoost

Contents

	SageMaker Example

	Full API

SageMaker Example

Use XGBoost as a built-in algorithm

The XGBoost algorithm can be used 1) as a built-in algorithm, or 2) as a framework such as MXNet, PyTorch, or Tensorflow.
If SageMaker XGBoost is used as a built-in algorithm in container version 0.90-2 or later, Amazon SageMaker Debugger will be available by default (i.e., zero code change experience).
See XGBoost Algorithm AWS docmentation [https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html] for more information on how to use XGBoost as a built-in algorithm.
See Amazon SageMaker Debugger examples [https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger] for sample notebooks that demonstrate debugging and monitoring capabilities of Amazon SageMaker Debugger.
See SageMaker Python SDK [https://sagemaker.readthedocs.io/en/stable/] for more information on how to configure the Amazon SageMaker Debugger from the Python SDK.

Use XGBoost as a framework

When SageMaker XGBoost is used as a framework, it is recommended that the hook is configured from the SageMaker Python SDK [https://sagemaker.readthedocs.io/en/stable/].
By using SageMaker Python SDK, you can run different jobs (e.g., Processing jobs) on the SageMaker platform.
You can retrieve the hook as follows.

import xgboost as xgb
from smdebug.xgboost import Hook

dtrain = xgb.DMatrix("train.libsvm")
dtest = xgb.DMatrix("test.libsmv")

hook = Hook.create_from_json_file()
hook.train_data = dtrain # required
hook.validation_data = dtest # optional
hook.hyperparameters = params # optional

bst = xgb.train(
 params,
 dtrain,
 callbacks=[hook],
 evals_result=[(dtrain, "train"), (dvalid, "validation")]
)

Alternatively, you can also create the hook from smdebug’s Python API as shown in the next section.

Use the Debugger hook

If you are in a non-SageMaker environment, or even in SageMaker, if you want to configure the hook in a certain way in script mode, you can use the full Debugger hook API as follows.

import xgboost as xgb
from smdebug.xgboost import Hook

dtrain = xgb.DMatrix("train.libsvm")
dvalid = xgb.DMatrix("validation.libsmv")

hook = Hook(
 out_dir=out_dir, # required
 train_data=dtrain, # required
 validation_data=dvalid, # optional
 hyperparameters=hyperparameters, # optional
)

Full API

def __init__(
 self,
 out_dir,
 export_tensorboard = False,
 tensorboard_dir = None,
 dry_run = False,
 reduction_config = None,
 save_config = None,
 include_regex = None,
 include_collections = None,
 save_all = False,
 include_workers = "one",
 hyperparameters = None,
 train_data = None,
 validation_data = None,
)

Initializes the hook. Pass this object as a callback to xgboost.train().

	out_dir (str): A path into which tensors and metadata will be written.

	export_tensorboard (bool): Whether to use TensorBoard logs.

	tensorboard_dir (str): Where to save TensorBoard logs.

	dry_run (bool): If true, evaluations are not actually saved to disk.

	reduction_config (ReductionConfig object): Not supported in XGBoost and will be ignored.

	save_config (SaveConfig object): See the Common API [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api].

	include_regex (list[str]): List of additional regexes to save.

	include_collections (list[str]): List of collections to save.

	save_all (bool): Saves all tensors and collections. WARNING: May be memory-intensive and slow.

	include_workers (str): Used for distributed training, can also be “all”.

	hyperparameters (dict): Booster params.

	train_data (DMatrix object): Data to be trained.

	validation_data (DMatrix object): Validation set for which metrics will evaluated during training.

See the Common API [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api] page for details about Collection, SaveConfig, and ReductionConfig.See the Analysis [https://github.com/awslabs/sagemaker-debugger/blob/master/docs/analysis] page for details about analyzing a training job.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

_static/plus.png

